Research paper: “Forecasting Icterus with Machine Learning: An Advanced Classification Model Analysis” (CMBEBIH & MEDICON 2023)

Ms Tamara Pavlovic presented research paper “Forecasting Icterus with Machine Learning: An Advanced Classification Model Analysis” on a joint event CMBEBIH & MEDICON 2023 which held place in Sarajevo, Bosnia and Herzegovina from September 14th to September 16th. The study utilized multiple Machine Learning classification models to predict icterus type on a custom dataset and demonstrated the models’ performances in estimating icterus type. The authors are Ms Tamara Pavlovic (MSc candidate), Mr Marko Grebovic (PhD candidate), dr Armin Alibasic, prof. Milica Vukotic, and Mr Stevan Sandi (PhD candidate).

Ms Tamara Pavlovic presented the research paper “Forecasting Icterus with Machine Learning: An Advanced Classification Model Analysis”

ABSTRACT – Icterus is a medical condition characterized by the yellowing of the skin and sclera caused by the accumulation of bilirubin in the body. There are three main types of icterus: extrahepatic, intrahepatic, and prehepatic, and accurately diagnosing the type is crucial for treatment. Machine learning classification techniques can aid in the accurate and timely diagnosis of icterus types. The present study utilized multiple Machine Learning classification models to predict icterus type on a custom dataset and demonstrated the models’ performances in estimating icterus type. The MLP Classifier with five hidden layers achieved the best results. However, the models still struggled to differentiate between instances of extrahepatic and prehepatic types, indicating the need for improvements to enhance the models’ performance.

Research paper: “Thyroid Hormones Parameter-Based Classification of Patient Health Status: An Analysis of Machine Learning Techniques” (CMBEBIH & MEDICON 2023)

Ms Zoja Scekic presented the research paper “Thyroid Hormones Parameter-Based Classification of Patient Health Status: An Analysis of Machine Learning Techniques” on a joint event CMBEBIH & MEDICON 2023 which held place in Sarajevo, Bosnia and Herzegovina from September 14th to September 16th. The paper proposes utilization of machine learning (ML) algorithms for disease diagnosis based on patients’ thyroid hormones levels. The authors are Ms Zoja Scekic, dr Luka Filipovic, prof. Ivana Katnic, prof. Nela Milosevic, and Mr Stevan Sandi.

Results of several ML models

ABSTRACT – Thyroid autoimmune diseases are widely spread and present in the world population. The problem with these diseases is that giving the diagnosis is often challenging, as the symptoms are similar with some other health problems (for example, depression). This paper proposes utilization of machine learning (ML) algorithms for disease diagnosis based on patients’ thyroid hormones levels. The experiment was done on a dataset that consisting of 2000 data samples with following parameters: TSH, FT4, TT3, SHBG, and T total hormones. Dataset was prepared before feeding into machine learning models. ML algorithms used in the experiment were Logistic Regression, Random Forest Classifier, Naive Bayes, and Support Vector Machines (SVM). For evaluation, multiple metrics were used: confusion matrix, precision, recall, and accuracy. The whole process could be more efficient and accurate with use of good quality artificial intelligence systems as help in making a better diagnosis.

Research paper: “Liver Diseases Classification Using Machine Learning Algorithms” (CMBEBIH & MEDICON 2023)

Mr Ivan Jovovic presented his research paper “Liver Diseases Classification Using Machine Learning Algorithms” on a joint event CMBEBIH & MEDICON 2023 which held place in Sarajevo, Bosnia and Herzegovina from September 14th to September 16th. The research aims to show how Artificial Intelligence (AI) can help predict liver diseases based on the patient’s parameters.

Mr Ivan Jovovic presented the research paper “Liver Diseases Classification Using Machine Learning Algorithms”

ABSTRACT – This study aims to show how Artificial Intelligence (AI) can help predict liver diseases based on the patient’s parameters. The focus is to provide a reliable and accurate tool to support healthcare professionals in decision making process. Alongside dataset preparation and feature engineering, three well known machine learning algorithms (ML) were used to achieve this goal: Support Vector Machine (SVM), Random Forest (RF), and XGBoost (XGB), alongside with simple Artificial Neural Network (ANN). The best-performing model was SVM, with an average precision of 88%, outcome that is comparable to the accuracy obtained in the studies analyzed in this paper, but with a slightly different approach, especially in dataset preparation.

Research paper: “Ten Year Cardiovascular Risk Estimation: A Machine Learning Approach” (CMBEBIH & MEDICON 2023)

Mr Dejan Babic presented the research paper “Ten Year Cardiovascular Risk Estimation: A Machine Learning Approach” on a joint event CMBEBIH & MEDICON 2023 which held place in Sarajevo, Bosnia and Herzegovina from September 14th to September 16th. The paper presented a comprehensive analysis of the use of Machine Learning and Artificial Intelligence techniques in the sense of predicting the risk, and therefore evaluate their potential in identifying patients with possibilities of developing cardiovascular disease.

Mr Dejan Babic presented his research paper "Ten Year Cardiovascular Risk Estimation: A Machine Learning Approach" at CMBEBIH&MEDICON 2023
Mr Dejan Babic presented his research paper “Ten Year Cardiovascular Risk Estimation: A Machine Learning Approach” at CMBEBIH&MEDICON 2023

ABSTRACT – Cardiovascular disease is one of the most common causes of death in the world. Usual practice in medicine is estimation of 10 years risk of patients developing cardiovascular disease. This practice enables taking preventive measures such as early medical treatments and lifestyle changes. The key step is to accurately assess the risk where the patients can be treated accordingly. With advancement of Artificial Intelligence and ML in medicine, this study aims to present a comprehensive analysis of the use of these techniques in the sense of predicting the risk, and therefore evaluate their potential in identifying patients with possibilities of developing cardiovascular disease. First, an analysis of the working dataset is provided. Then, various traditional classification models are implemented and trained on the dataset, and their performance is compared. The classifying models used in this research include SVC, KNN etc. The results of this study are presented in systematic comparison, where the performances of all the models are represented with discussion about challenges and possible limitations of the data regarding this particular problem. Normalization and oversampling techniques were used and reduced the overfitting problem.

Experiment results
Results of the experiment

Young researchers from HPC4S3ME submitted papers to MEDICON’23

Young researches from UDG and HPC4S3ME submitted their papers to the 16th Mediterranean Conference on Medical and Biological Engineering and Computing (MEDICON’23) on topic of application of Artificial Intelligence in medicine. Conference is going to be held in Sarajevo, Bosnia and Herzegovina, from September 14th to September 16th.

MEDICON’23 and CMBEBIH’23 is going to be held from 14th to 16th September

HPC4S3ME presented on InnovateYourFuture workshop

A very successful two-day workshop for students and industry took place on April 22nd and 23rd 2023, on which young researches from HPC4S3ME gave lectures. The workshop was organized in the context of the training project called “Competency Training for IoT and AI – InnovateYourFuture” supported by ANSO – Alliance of International Science Organizations, China. The organization is done in collaboration with EuroCC Montenegro and Montenegrin AI Association. During the event, UDG also presented HPC4S3ME project, as well as some of other projects currently implemented at UDG.

ML and IoT in agriculture
ML/AI in medicine
ANSO InnovateYourFuture Workshop on 22-23 April 2023
Lecture on ML and Data preparation

MEDICON’23 and CMBEBIH’23

The University of Donja Gorica is a co-organizer of the 16th Mediterranean Conference on Medical and Biological Engineering and Computing (MEDICON’23) and the 5th International Conference on Medical and Biological Engineering (CMBEBIH’23), organized by the Society for Medical and Biological Engineering of Bosnia and Herzegovina (DMBIUBIH), Verlab Research Institute for Biomedical Engineering, Medical Devices, and Artificial Intelligence with the University of Sarajevo and the University of Banja Luka.

UDG is a co-organizer of the MEDICON'23 and CMBEBIH'23
UDG is a co-organizer of the MEDICON’23 and CMBEBIH’23

The aim of the conference is to present all traditional areas of biomedical engineering and highlight upcoming innovations in the field of artificial intelligence, big data, machine learning, and healthcare.

The scientific and social program at MEDICON’23 & CMBEBIH’23 provides an excellent platform for researchers, scientists, engineers, physicists, and clinical experts to discuss the latest discoveries, innovative solutions, and new challenges in this field to improve the quality of healthcare and overall well-being.

Applications can be submitted through the following link: https://equinocs.springernature.com/service/MEDICON2023-CMBEBIH2023.